PERIMETRE.

OBJECTIFS:

- 1) Savoir comparer des périmètres.
- 2) Savoir calculer le périmètre d'un polygone.
- 3) Connaître et savoir utiliser la formule donnant la longueur d'un cercle.
- 4) Savoir effectuer pour les longueurs des changements d'unités de mesure.

Activités: voir activités du livre.

I. PERIMETRE.

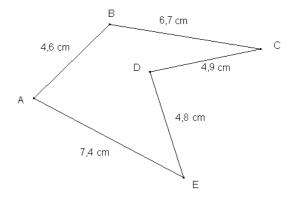
A. DEFINITION.

Définition 1:

Le **périmètre** d'une figure fermée est la **longueur du contour** de cette figure.

Exemple 1:

Ici, l'unité de longueur considérée est le centimètre.


La longueur *AB* mesure 4,6 cm, *BC* mesure 6,7 cm, *DC* mesure 4,9 cm, *DE* mesure 4,8 cm et *AE* mesure 7,4 cm.

Pour trouver le périmètre, il faut ajouter toutes ces mesures :

$$p = AB + BC + CD + DE + EA$$

$$p = 4.6 + 6.7 + 4.9 + 4.8 + 7.4 = 44.6$$
 cm

Le périmètre de la figure est donc 44,6 cm.

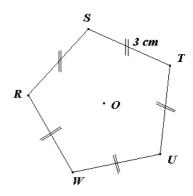
Point méthode 1 :

Pour comparer des périmètres, il existe plusieurs méthodes :

- ① Il est possible de reporter la longueur de chacun des côtés des figures sur une demidroite.
- ① Le périmètre d'un polygone est la somme des longueurs de ses côtés. Il est ainsi possible de comparer des nombres.
- ① Il est possible d'utiliser un raisonnement basé sur le codage ou sur des formules de figures usuelles.

Exemple 2:

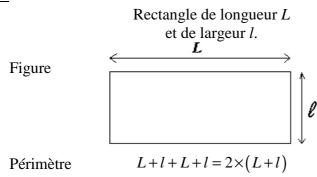
Pour la figure précédente, on peut « déplier » la figure sur une demi-droite (graduée ou non).

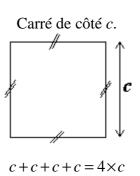

$$A'$$
. A' B' C' B'

En faisant de même pour d'autres figures, on peut ainsi comparer des périmètres sans les calculer.

http://www.sylvain-etienne.fr

Exemple 3:

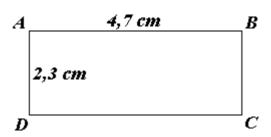

Pour la figure ci-contre, on peut utiliser un raisonnement : en effet, les cinq côtés sont de même longueur, ce qui donne comme périmètre : $p = 5 \times 3 = 15$ cm.



Exercices proposés: Exercices N°1 page 232.

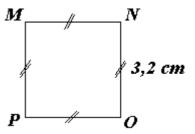
B. PERIMETRE DE FIGURES USUELLES.

Proposition 1:



Exemple 4:

 \overline{ABCD} est un rectangle. Son périmètre est : $2\times(2,3+4,7) = 2\times7 = 14$ cm.


Le périmètre de ABCD est 14 cm.

Exemple 5:

MNOP est un carré. Son périmètre est : $4\times3, 2=12, 8 \text{ cm}$.

Le périmètre de MNOP est 12,8 cm.

Exercices proposés: Exercices N°17 et 18 page 234.

II. LONGUEUR D'UN CERCLE.

Définition 2 :

La lettre grecque π (lire « pi ») désigne un nombre particulier qui permet, entre autres, de calculer la longueur d'un cercle.

6^e M. ETIENNE 2007/2008 **CHAPITRE 13**

http://www.sylvain-etienne.fr

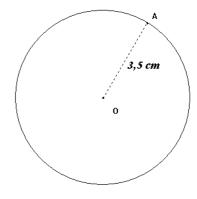
Remarque 1:

La partie décimale de π a une infinité de chiffres. π n'est donc pas un nombre décimal.

Pour calculer avec le nombre π , nous utiliserons des valeurs approchées comme 3,1 (valeur approchée au dixième), ou 3,14 (valeur approchée au centième) ou la touche π de la calculatrice.

Définition 3:

Le rayon d'un cercle et sa longueur sont proportionnels.


La longueur d'un cercle de rayon R est : $2 \times \pi \times R$.

Exemple 6:

Le cercle ci-contre a pour rayon 3,5 cm.

La longueur exacte du cercle est $2 \times \pi \times 3, 5 = 7 \times \pi$ cm.

Une valeur approchée au centième de la longueur du cercle est 21,99 cm.

Exercices proposés: Exercices N°25 à 31 page 235.

III. DIFFICULTES.

BIBLIOGRAPHIE:

TRANSMATH 6^e, NATHAN (livre de la classe),

MATH 6^e, MAYARD,

PHARE 6^e, HACHETTE,

TRIANGLE 6^e, HATIER,

<u>DIMATHEME 6^e</u>, DIDIER.