MULTIPLICATION.

OBJECTIFS:

- 1) Connaître les tables de multiplication et les résultats qui en dérivent.
- 2) Savoir multiplier un nombre par 10 ; 100 ; 1000 et par 0,1 ; 0,01 et 0,001.
- 3) Savoir effectuer des multiplications de nombres décimaux sous les diverses formes de calcul : mental, posé et instrumenté.
- 4) Connaître et savoir utiliser le vocabulaire suivant : facteur, produit.
- 5) Savoir résoudre des problèmes, en choisissant les opérations qui conviennent au traitement de la situation étudiée, et dont la solution conduit à effectuer diverses opérations successives.
- 6) Savoir établir un ordre de grandeur d'un produit.

Activités: voir activités du livre.

I. MULTIPLICATION PAR UN NOMBRE ENTIER.

Définition 1:

Additionner un certain nombre, a, de fois une quantité, c'est multiplier la quantité par a.

Remarque 1:

La multiplication est bien souvent utilisée pour simplifier de fastidieux calculs.

Exemple 1:

Définition 2:

Le résultat de la multiplication de deux nombres s'appelle le **produit** de ces deux nombres.

Chacun de ces deux nombres multipliés est appelé facteur.

Exemple 2:

Proposition 1:

Pour tout nombre décimal a, nous avons :

$$0 \times a = 0$$
 et $a \times 0 = 0$;
 $1 \times a = a$ et $a \times 1 = a$.

Exemple 3:

$$123456789 \times 0 = 0$$
 et $0 \times 98,7654321 = 0$.
 $123456789 \times 1 = 123456789$ et $1 \times 98,7654321 = 98,7654321$.

Exercices proposés : Exercices N°1 à 21 pages 54 à 56.

http://perso.wanadoo.fr/sylvain.etienne

II. MULTIPLICATION PAR 10; 100; 1000 ET PAR 0,1; 0,01 ET 0,001.

Proposition 2:

Pour multiplier un nombre par 10 ; 100 ou 1000, nous déplaçons la virgule de 1, 2 ou 3 rangs (le nombre de zéros) vers la droite (les zéros sont à droite du 1).

Pour multiplier un nombre par 0,1 ; 0,01 ou 0,001, nous déplaçons la virgule de 1, 2 ou 3 rangs (le nombre de zéros, ou le nombre de chiffres après la virgule) vers la gauche (les zéros sont à gauche du 1).

Exemple 4:

 $1.54 \times 10 = 15.4$;

 $8,75\times0,01=0,0875$.

Exercices proposés: Exercices N°26 à 37 pages 56-57.

III. MULTIPLIER PAR UN NOMBRE DECIMAL.

A. METHODE.

Point méthode 1:

Pour effectuer la multiplication de deux nombres décimaux :

- Commencer par poser l'opération en colonne,
- Effectuer le calcul sans tenir compte des virgules,
- Compter le nombre de chiffre après la virgule dans chacun des facteurs et en faire la somme.
- Placer la virgule au résultat de sorte que la somme précédente corresponde au nombre de chiffres après la virgule.

Exemple 5:

1ère et 2ème étapes	3ème étape	4ème étape
4,9 2	Pour 4,92 il y a deux chiffres	4,9 2
× 1,3 1 4 7 6	après la virgule et pour 1,3 il y a un chiffre après la virgule. 2+1=3.	$\frac{\times 1,3}{1476}$
+492. 6396	Il faut donc avoir trois chiffres après la virgule au résultat.	+492. 6,396

Exercices proposés: Exercices N°38 à 62 pages 57-58.

B. PROPRIETES DE LA MULTIPLICATION.

Remarque 1:

Attention, multiplier n'agrandit pas toujours un nombre.

Par exemple: $0.2 \times 0.3 = 0.06$; or 0.06 < 0.2 et 0.06 < 0.3.

Proposition 3:

Dans une multiplication de deux facteurs, nous ne changeons pas le résultat en permutant les deux facteurs.

Exemple 6:

 $5 \times 6 = 6 \times 5 = 30$;

 $10\times0,01=0,01\times10=0,1$; $0,2\times1,6=1,6\times0,2=0,32$.

M. ETIENNE 6^e 2005/2006 http://perso.wanadoo.fr/sylvain.etienne CHAPITRE 07

Proposition 4:

Lors du calcul du produit de plusieurs facteurs, nous pouvons changer l'ordre des facteurs et les regrouper sans que cela change le résultat.

Exemple 7:

Calculer astucieusement :

$$A = 2 \times 7 \times 9 \times 5 = 2 \times 5 \times 7 \times 9$$
; $B = 4,5 \times 2,2$; $B = 5 \times 0,9 \times 2 \times 1,1$; $A = 10 \times 63 = 630$. $B = (5 \times 2) \times (0,9 \times 1,1)$; $B = 10 \times 0.99 = 9.9$.

Exercices proposés: Exercices N°42 à 50 page 57.

IV. ORDRE DE GRANDEUR D'UN PRODUIT.

Règle 1:

Pour obtenir un ordre de grandeur :

• D'un produit, il faut multiplier un **ordre de grandeur** de chaque facteur.

Exemple 8:

Cherchons un ordre de grandeur de $C = 61,9 \times 86,3$.

Le nombre 61,9 est proche de 60 et 86,3 est proche de 90.

Donc un ordre de grandeur du produit $C = 61,9 \times 86,3$ est $60 \times 90 = 5400$, *id est* 5400.

En conclusion, nous pouvons dire que $C = 61,9 \times 86,3$ est proche de 5400.

Cherchons un ordre de grandeur de $D = 412,09 \times 1086,35$.

Le nombre 412,09 est proche de 400 et 1086,35 est proche de 1000.

Donc un ordre de grandeur du produit $D = 412,09 \times 1086,35$ est 400×1000 , *id est* 400×1000 .

En conclusion, nous pouvons dire que $D = 412,09 \times 1086,35$ est proche de 400 000.

Exercices proposés: Exercices N°22 à 25 page 56; 40 et 41 page 57.

V. <u>DIFFICULTES.</u>

BIBLIOGRAPHIE:

TRANSMATH 6^e, NATHAN (livre de la classe), MATH 6^e, MAYARD, PHARE 6^e, HACHETTE, TRIANGLE 6^e, HATIER, DIMATHEME 6^e, DIDIER.